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The classical approach for multi-phase mixtures

→ A multiphase flow can be considered as a set of interacting
continua.

Postulating Truesdell (1984, p.81) “ a sequence of bodies Bn, all of
which … occupy regions of space … simultaneously ”

C. Truesdell. Rational Thermodynamics, McGraw-Hill, New York, 1984.

Averaging Phases are continua separated by an interface

D.A. Drew, S.L. Passman. Theory of Multicomponent Fluids, Springer, New
York, 1999.
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The classical approach for multi-phase mixtures

The averaging and postulation yield the same results

∂t(αnρn) +∇ · (αnρnvn) = Γn,

∂t(αnρnvn) +∇ · (αnρnvn ⊗ vn − αnTn) = Mn + Γnvn,
∂t(αnρnen) +∇ · (αnρnenvn − αnTn · vn + αnqn) = En +Mnvn + Γnen,

This system must be supplemented with
→ state equations, Tn(Sn), en(Sn),qn(Sn)
→ constitutive equations, Γn(S1, . . . , Sn),Mn(S1, . . . , Sn), En(S1, . . . , Sn)
→ boundary and initial conditions
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The classical approach for multi-phase mixtures

Constitutive equations should be formulated by means of principles

• well-posedness
• separation of components, self-interaction of phase n are f(Sn)
• Galilean invariance

→ constitutive equations must also satisfy the entropy inequalities.

A two-phase model, (n = 1, 2), is the Baer-Nunziato (BN) model

∂t(αnρn) +∇ · (αnρnun) = 0,
∂t(αnρnun) +∇ · (αn(ρnun ⊗ un + pnI) = pI∇αn,

∂t(αnρnEn) +∇ · (αn(ρnEn + pn)un) = pIuI · ∇α1,

∂tαn + uI · ∇αn = 0.

M.R. Baer, J.W. Nunziato. Int. J. Multiph. Flow, 12(6), p. 861–889, 1986.
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A different continuum theory for multi-phase mixtures

How, whithin the continuum approach, to

• derive a closed form for a multi-phase mixture model
→ avoiding the formulation of constitutive equations;

• derive a model generalized to an arbitrary number of
constituents;

• include multi-material properties of phases.

Axiom → AII correct physical theories must be built on a proper
mathematical framework

→ Symmetric Hyperbolic Thermodynamically Compatible
(SHTC) formulation of continuum mechanics
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SHTC formulation of continuum mechanics

The development of a model considers

• causality
• conservation
• thermodynamic principles
• Galilean invariance
• well-posedness of the initial value problem (IVP)

How can one guaranty that the IVP for a new nonlinear continuum
mechanics model is well-posed?

S. K. Godunov. An interesting class of quasilinear systems, Dokl. Akad.
Nauk SSSR, 139, 521-523, 1961;
E. I.Romenski et al. J. Sci. Comput. 42, 68–95 (2010).

Symmetric hyperbolic systems of PDEs
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SHTC formulation of continuum mechanics

If a first order system of conservation laws, for q = (q1,q2, . . . ,qn),

∂q
∂t +

∂Fk(q)
∂xk

= 0 (1)

admits an extra conservation law for a strictly convex potential E(q),

∂E(q)
∂t +

∂Gk(q)
∂xk

= 0 (2)

Introducing p = Eq, and the potential L(p) = q · p− E(q),
Lk(p) = Eq · Fk(q)− Gk(q) = p · Fk(q)− Gk(q), eq. (1) reads

∂Lp
∂t +

∂Lkp
∂xk

= 0 (3)
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SHTC formulation of continuum mechanics

Eq. (3) can be rewritten in a symmetric quasilinear form as

Lpipj
∂pj
∂t + Lkpipj

∂pj
∂xk

= 0. (4)

The system (1) and the conservation law of the total energy (2)
costitute and overdetermined system of PDEs

Eq ·
(
∂q
∂t +

∂Fk(q)
∂xk

)
≡ ∂E(q)

∂t +
∂Gk(q)
∂xk

(5)

Thus, this subclass of symmetric hyperbolic PDEs can be associated
with the thermodynamically compatible systems of first order
nonlinear conservation laws.
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SHTC multi-phase theory - Definitions of the mixture theory

Composition characteristics

A mixture of N phases denoted by a, where a = 1, . . . ,N.
The mass M and the volume V of an infinitesimal element read

M =
N∑

a=1
ma, V =

N∑
a=1

νa, (6)

ρ =
M
V =

m1 +m2 + . . .+mN
V =

N∑
a=1

ϱa, where ϱa :=
ma
V (7)

The volume fraction and the mass fraction read

αa :=
νa
V , ca :=

ma
M =

ϱa
ρ
,

N∑
a=1

αa = 1,
N∑

a=1
ca = 1. (8)
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SHTC multi-phase theory - Definitions of the mixture theory

Composition characteristics

The mass density of the a-th phase of the partial volume νa, i.e.

ρa =
ma
νa

=
maV
νaV

=
ϱa
αa

, → ϱa = αaρa. (9)

The mixture entropy density η = ρS is defined as

η :=
N∑

a=1
ηa =

N∑
a=1

ϱasa (10)

where sa is the specific entropy of the a-th phase.
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SHTC multi-phase theory - Definitions of the mixture theory

Kinematics of mixtures

The linear momentum U = {Uk} is defined as

U := u1 + u2 + . . .+ uN = ϱ1v1 + ϱ2v2 + . . .+ ϱNvN. (11)

The velocity V = {Vk} of the mixture control volume is

V :=
U
ρ
=

ϱ1v1 + ϱ2v2 + . . .+ ϱNvN
ρ

= c1v1 + c2v2 + . . .+ cNvN. (12)

For the SHTC formulation the relative velocity w = {wa,k} is needed

wa = va − vN, wa,k = va,k − vN,k, k = 1, . . . , 3. (13)

which is defined with respect to the N-th constituent that can be
chosen arbitrary.

11



SHTC multi-phase theory - Formulation

Define a vector of conserved variables Q,

Q = {ρ,U, ϕ1, . . . , ϕN−1, ϱ1, . . . , ϱN−1,w1, . . . ,wN−1, η1, . . . , ηN}, (14)

and the vector of primitive variables P

P = {ρ, V, α1, . . . , αN−1, c1, . . . , cN−1,w1, . . . ,wN−1, s1, . . . , sN}, (15)

which are related as

ϕa = ραa, U = ρV, ϱa = ρca ηa = ρsa. (16)
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SHTC multi-phase theory - Formulation

The total energy density E of the mixture

E =
N∑

a=1
Ea =

N∑
a=1

(
εa +

1
2ϱa

∥ua∥2
)
, (17)

then can be expressed in the SHTC state variables

E(Q) =
N∑

a=1
εa +W(ρ, ϱ1, . . . , ϱN−1,wa, . . . ,wN−1) +

1
2ρ

3∑
k=1

U2
k, (18)

where the relative kinetic energy W is defined as

W :=
1
2

3∑
k=1

N−1∑
a=1

ϱaw2
a,k −

1
2ρ

3∑
k=1

(N−1∑
a=1

ϱawa,k

)2

. (19)

The internal energies εa = ϱaea, in eq.(18)

εa(ρ, ϱa, ηa) = ε̂a(ρa, sa) = ε̂a

(
ϱaρ

ϕa
,
ηa
ϱa

)
, (20)
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SHTC multi-phase theory - Formulation

In the SHTC theory, the thermodynamic pressure of the mixture

P(Q) := ρEρ + UiEUi + ϕaEϕa + ϱaEϱa + ηaEηa − E , (21)

The partial derivatives of the total mixture energy with respect to the
state vector Q are, e.g.

∂E
∂ρ

=
N−1∑
a=1

∂ε̂a
∂ρa

ϱa
ϕa

+
∂ε̂N
∂ρN

(
ρϕN − ρϱN + ϱNϕN

ϕ2
N

)
− ∂ε̂N

∂sN
ηN
ϱ2N

+ (22)

+
1
2ρ2

3∑
k=1

N∑
a=1

(ϱawa,k)
2 − 1

2ρ2
3∑

k=1

U2
k,

∂E
∂Ui

=
1
ρ
Ui. (23)
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SHTC multi-phase theory - Formulation

The SHTC multi-phase system for of N phases, a = 1, . . . ,N,

∂Ui
∂t +

∂
(
UiVk + Pδik + wa,iEwa,k

)
∂xk

= 0, (24a)

∂wa,k
∂t +

∂
(
wa,lVl + Eϱa

)
∂xk

− Vl
(
∂wa,k
∂xl

−
∂wa,l
∂xk

)
= 0, (24b)

∂ϱa
∂t +

∂
(
ϱaVk + Ewa,k

)
∂xk

= 0, (24c)

∂ϕa
∂t +

∂ (ϕaVk)
∂xk

= 0 (24d)

∂ρ

∂t +
∂ (ρVk)
∂xk

= 0, (24e)

∂ηa
∂t +

∂(ηaVk)
∂xk

= 0, (24f)
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SHTC multi-phase theory - Formulation

The SHTC multi-phase system for of N phases, a = 1, . . . ,N,

∂Ui
∂t +

∂
(
UiVk + Pδik + wa,iEwa,k

)
∂xk

= 0, (25a)

∂wa,k
∂t +

∂
(
wa,lVl + Eϱa

)
∂xk

− Vl
(
∂wa,k
∂xl

−
∂wa,l
∂xk

)
= −Λa,k, (25b)

∂ϱa
∂t +

∂
(
ϱaVk + Ewa,k

)
∂xk

= −χa, (25c)

∂ϕa
∂t +

∂ (ϕaVk)
∂xk

= −Φa, (25d)

∂ρ

∂t +
∂ (ρVk)
∂xk

= 0, (25e)

∂ηa
∂t +

∂(ηaVk)
∂xk

= Πa − πa, (25f)
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SHTC multi-phase theory - Formulation

Various dissipative processes can be considered

Φa pressure relaxation

Φa = ρ

N−1∑
b=1

ϕabEϕb , Eϕa =
∂E
∂ϕa

= −pa − pN
ρ

, (26)

Λa,k relative velocity relaxation

Λa,k =
1
ρ

N−1∑
b=1

λab,kEwb,k , Ewb,k =
∂E

∂wb,k
= ϱb(vb,k − Vk), (27)

→ they diminish the thermodynamic forces Eϕa , Ewa,k .

→ Πa serve the goal of making the system compatible with the
second law of thermodynamic.
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SHTC multi-phase theory - A different form

Is it possible to write this system in a different form?

→ Recall the BN-type model

∂t(αnρn) +∇ · (αnρnun) = 0,
∂t(αnρnun) +∇ · (αn(ρnun ⊗ un + pnI) = pI∇αn,

∂t(αnρnEn) +∇ · (αn(ρnEn + pn)un) = pIuI · ∇α1,

∂tαn + uI · ∇αn = 0.

→ A conservation equation of mass, momentum, energy and volume
fraction for each phase + inter-phase terms
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SHTC multi-phase theory - A different form

The phase volume fraction equations from the eq. (25d) and (25e)

∂αa
∂t + Vk

∂αa
∂xk

= − 1
ρ
Φa (28)

The phase mass equations (25c) can be rewritten as

∂ϱa
∂t +

∂
(
ϱava,k

)
∂xk

= −χa. (29)
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SHTC multi-phase theory - A different form

The phase momentum equations, after lengthy manipulations

∂ua,i
∂t +

∂

∂xk
(
ua,iva,k + Paδki

)
= −ca

N∑
b=1

pb
∂αb
∂xi

+ pa
∂αa

∂xi
(30a)

− ca
N∑

b=1

ϱbv̄b,kωb,k,i + ϱav̄a,kωa,k,i (30b)

−ca
N∑

b=1

ϱbsb
∂Tb
∂xi

+ ϱasa
∂Ta
∂xi

(30c)

+ca
N∑

b=1

ϱbΛb,i − ϱaΛa,i (30d)

+ca
N∑

b=1

vb,iχb − va,iχa, (30e)
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SHTC - Extension to elasto-plastic solids and viscous fluid

Thanks to Eulerian hyperelasticity equations of Godunov and
Romenski (GPR)

S.K. Godunov and E.I.Romenski. Non stationary equations of the non
linear theory of elasticity in Euler coordinates. Journal of Applied
Mechanics and Technical Physics, 13:868–885, 1972.
I. Peshkov and E.I. Romenski. A hyperbolic model for viscous Newtonian
flows. Continuum Mechanics and Thermodynamics, 28:85–104, 2016.

An evolution equation for a matrix value field Aa, called distortion
matrix or cobasis, should be added for each phase.

→ In solid mechanics is the inverse of the deformation gradient.

→ In visco-plastic flows is a local field of the material element.
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SHTC - Extension to elasto-plastic solids and viscous fluid

Aa satisfies the convection-relaxation

∂Aa,i,k
∂t +

∂
(
Aa,i,mva,m

)
∂xk

+ va,m
(
∂Aa,i,k
∂xm

−
∂Aa,i,m
∂xk

)
= Za,i,k, (31)

in which the stiff strain relaxation source term Za is

Za = − 3
τa

( det Aa)5/3 Aa dev
(
ATa Aa

)
. (32)

The total energy potential E should be augmented with εsa

E =
N∑

a=1
(εa + εsa) +W(ρ, ϱa,wa) +

1
2ρ∥U∥

2. (33)
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SHTC - Extension to elasto-plastic solids and viscous fluid

εsa is assumed to be

εsa = ϱa Cs2a
tr (dev Ga dev Ga)

4 , with Ga = ATaAa (34)

For this choice of elastic-shear energy potential, the elastic-shear
stress tensor reads

σa := −ϱaAT
∂E
∂A = −ϱa Cs2a (Ga dev Ga). (35)
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Numerical Method - A simplified model

A simplified mathematical model is addressed, for N = 3, a = 1, 2, 3

∂ϱa
∂t +

∂ua,k
∂xk

= 0

∂ua,i
∂t +

∂

∂xk
(
ua,iva,k + Paδi,k − σa,k,i

)
= −ca

N∑
b=1

pb
∂αb
∂xi

+ pa
∂αa

∂xi

− ca
N∑

b=1

ϱbv̄b,kωb,k,i + ϱav̄a,kωa,k,i +ca
N∑

b=1

λbϱbv̄b,k − λaϱav̄a,k,

∂sa
∂t + Vk

∂sa
∂xk

=
λa
Ta

cav̄2a,k,

∂αa
∂t + Vk

∂αa
∂xk

= 0,

∂Aa,i,k
∂t +

∂(Ama,ivma )
∂xk

+ vma

(
∂Aa,i,k
∂xm −

∂Ama,i
∂xk

)
= Za,i,k,
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Numerical Method - Matrix-vector notation

A compact matrix-vector notation can be defined as

∂tQa +∇ · F(Qa) + B(Qa) · ∇Qa = S(Qa) (37)

with a vector of conserved Qa and primitive Va variables for each
phase

Qa = (ϱa,ua, sa, αa,Aa), Va = (ρa, va,Pa, αa,Aa)T, (38)

which are related by operators

Qa(x, y) = C[Va(x, y)], and Va(x, y) = P[Qa(x, y)]. (39)

The quasi-linear form

∂tVa+C∇Va = S(Va), with C =
∂Qa
∂Va

−1(∂F(Qa)

∂Va
+ B(Qa)

∂Qa
∂Va

)
. (40)
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Numerical Method - Approach

An operator splitting approach is employed.

→ first the homogeneous part of the system is solved

∂tQ+∇ · F(Q) + B(Q) · ∇Q = 0, → Q(1)
ij (41)

→ then the Cauchy problem for the ODEs system

dQ
dt = Sv(Qa) + Ss(Qa), Q(tn) = Q(1), → Qn+1

ij (42)

Sv(Qa) =


0

+ca
∑N

b=1 λbϱbv̄b,k − λaϱav̄a,k
0

λa
Ta cav̄

2
a,k

0

 , Ss(Qa) =


0
0
0
0
Za

 , (43)
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Numerical Method - Discretization of the homogenous part

A path-conservative MUSCL-Hancock method

Q(1)
i,j = Qn

i,j −
∆t
∆x

(
FRSi+1/2,j − FRSi−1/2,j + Di+1/2,j + Di−1/2,j

)
+

− ∆t
∆y

(
FRSi,j+1/2 − FRSi,j−1/2 + Di,j+1/2 + Di,j−1/2

)
+

+
∆t
∆xB1

[
Vri,j
(
t n+1/2, xi, yj

)]
∆Vi+

+
∆t
∆yB2

[
Vri,j
(
t n+1/2, xi, yj

)]
∆Vj.

(44)

Fluxes and non-conservative products are evaluated in the primitive
space of the variable.
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Numerical Method - Discretization of the homogenous part

The conservative numerical flux FRS

FRSi+1/2,j(vL, vR) =
1
2

(
F1(vL) + F1(vR)

)
− 1

2s
max
1

(
C[vR]− C[vL]

)
,

FRSi,j+1/2(vL, vR) =
1
2

(
F2(vL) + F2(vR)

)
− 1

2s
max
2

(
C[vR]− C[vL]

) (45)

The path integrals Di+1/2,j and Di,j+1/2

DΨ(vL, vR) · n̂ =
1
2

∫ 1

0
B [Ψ(vL, vR, s)] · n̂

∂Ψ

∂s ds (46)

in which the segment path Ψ(vL, vR, s) = vL + s(vR − vL)
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Numerical Method - Discretization of the homogenous part

The cell-local space-time predictor in the primitive space variable

Vri,j(x, y, t) = Vi,j + (x− xi,j)
∆Vi
∆x + (y− yi,j)

∆Vj
∆y + (t− tn) ∂tVi,j, (47)

→ ∆̃Vi, by means of Generalised minmod slope limiter

→ ∆Vi positivity preserving limiting

→ ∂tVi,j approximated with finite difference from (40)
+ source contribution
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Numerical Method - Discretization of the source contribution

Source related to the velocity relaxation process

dV
dt = Sv(V), V(tn) = P[Q(1)

ij ] = V(1)ij , → Vn+1
ij (48)

with Sv(Va) =


0

+
∑N

b=1 λbcbv̄b,k − λav̄a,k
0

λa
Ta cav̄

2
a,k

0

 . (49)

→ for each direction, an independent system for Ṽ1 = (v1,1, v2,1, v3,1)T

→ Backward Euler dicretization

Ṽn+1
1 = Ṽ(1)1 −∆t M Ṽn+1

1 → Ṽn+1
1 = (I−∆t M)−1 Ṽ(1)1 (50)

→ for entropy analytical solution Sv(Ṽn+1
1 , Tna)
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Numerical Method - Discretization of the source contribution

Source related to the distortion matrix

∂tAa +∇
(
Aa · va

)
+
(
∇Aa −∇ATa

)
· va =

−3
τa

(det Aa)5/3 AadevGa, (51)

→ highly non-linear, stiff, wide range of time scales,

→ in multi-phase context τa(αa) = τ
ξ(αa)
a τ

1−ξ(αa)
0 ,

→ an robust method to solve the strain relaxation source [1]

S. Chiocchetti, M. Dumbser. An exactly curl-free staggered semi-implicit
finite volume scheme for a first order hyperbolic model of viscous
two-phase flows with surface tension. Journal of Scientific Computing,
94:24, 2023.
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Numerical Method - Discretization of the source contribution

Source related to the distortion matrix

The problem is simplified by polar decomposition, recalling that the
metric tensor Ga = ATaAa,

Aa = Ra G1/2
a with G1/2

a = Ea Ĝ1/2
a E−1

a → Ra = Aa G−1/2
a , (52)

→ rotational component are invariant under strain relaxation

→ thus the following nonlinear ODE system is solved

dGa
dt =

G(1)
a − G(n)

a
∆t − 6

τa
( det Ga)

5/6 Ga dev Ga , (53)
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Numerical experiments - Lid driven cavity
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Figure 1: Rotations (Left), comparison velocity components in x and
y-direction (Right)
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Numerical experiments - Berilum bending plate

This problem simulates the elastic (reversible) vibrations of a
beryllium bar after an initial velocity impulse

Figure 2: Volume fractions (Left), comparison velocity component in
y-direction (Right)
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Numerical experiments - Three phases 2D Riemann problem

This problem tests the ability of a model to propagate shock waves
into different phases.

Figure 3: Volume fractions (Left), densities (Right)
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Numerical experiments - Three phases 2D Riemann problem

Figure 4: Volume fractions (Left), rotations (Right)
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Numerical experiments - A complex configuration

Figure 5: Volume fractions (Left), stress (Right)
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Research directions

Some future research directions are:

• development of a Hyperbolic Thermodynamically Compatible
(HTC) numerical scheme for the SHTC multiphase model,
considering more than two phases;

• extension of the multi-phase SHTC model to include
phenomena such as phase change and surface tension;

• development of a structure-preserving numerical scheme to
account for different involution constraints present in SHTC
systems;
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