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The classical approach for multi-phase mixtures

— A multiphase flow can be considered as a set of interacting
continua.

Postulating Truesdell (1984, p.81) “ a sequence of bodies B;, all of
which ... occupy regions of space ... simultaneously ”

@ C. Truesdell. Rational Thermodynamics, McGraw-Hill, New York, 1984.

Averaging Phases are continua separated by an interface

@ D.A. Drew, S.L. Passman. Theory of Multicomponent Fluids, Springer, New
York, 1999.




The classical approach for multi-phase mixtures

The averaging and postulation yield the same results

O(anpn) +V - (anpnVn) = T,
Oi(anpaVn) + V - (anppVn @ Vn — anTp) = M, + vy,
Ot(anpnen) + V - (anpnenVn — anTn Vo + an@n) = Eq + MoV + e,

This system must be supplemented with

— state equations, T,(Sn), en(Sn), 4n(Sn)

— constitutive equations, I,(S1,...,Sn), M (S1,...,Sn), En(S1, .-, Sn)
— boundary and initial conditions



The classical approach for multi-phase mixtures

Constitutive equations should be formulated by means of principles

- well-posedness
- separation of components, self-interaction of phase n are f(S,)

- Galilean invariance

— constitutive equations must also satisfy the entropy inequalities.

A two-phase model, (n =1, 2), is the Baer-Nunziato (BN) model

O (anpn) + V - (appnun) =0,

O (anpnln) + V- (an(poun @ Uy + ppl) = pVay,,
O(anpnEn) + V- (@n(pnEn + Pn)un) = piu; - Vau,
Oiap + U, - Va, = 0.

@ M.R. Baer, JW. Nunziato. Int. J. Multiph. Flow, 12(6), p. 861-889, 1986.




A different continuum theory for multi-phase mixtures

How, whithin the continuum approach, to

- derive a closed form for a multi-phase mixture model
— avoiding the formulation of constitutive equations;

- derive a model generalized to an arbitrary number of
constituents;

- include multi-material properties of phases.

Axiom — All correct physical theories must be built on a proper
mathematical framework

— Symmetric Hyperbolic Thermodynamically Compatible
(SHTC) formulation of continuum mechanics



SHTC formulation of continuum mechanics

The development of a model considers

- causality

- conservation

- thermodynamic principles

- Galilean invariance

- well-posedness of the initial value problem (IVP)

How can one guaranty that the IVP for a new nonlinear continuum
mechanics model is well-posed?

@ S. K. Godunov. An interesting class of quasilinear systems, Dokl. Akad.
Nauk SSSR, 139, 521-523, 1967;
E. LRomenski et al. J. Sci. Comput. 42, 68-95 (2010).

Symmetric hyperbolic systems of PDEs



SHTC formulation of continuum mechanics

If a first order system of conservation laws, for q = (g1, G2, .- -, qn),
99, OF*(q)
— =0 1
ot * an ( )

admits an extra conservation law for a strictly convex potential £(q),

OE(q) | 0G"(q)
at T ax, @)

Introducing p = Eq, and the potential L(p) = q - p — £(q),
L*(p) = Eq - F*(a) — G*(a) = p - F*(q) — G"(q), eq. (1) reads

o,  OLg
ot aXh



SHTC formulation of continuum mechanics

Eqg. (3) can be rewritten in a symmetric quasilinear form as

op; O

Pt " PP Ok, = (4)

LP.

The system (1) and the conservation law of the total energy (2)
costitute and overdetermined system of PDEs

dq  9F*(q)\ _ 9E(q) A 9G*(q)
Eq- (at % > ot T o )

Thus, this subclass of symmetric hyperbolic PDEs can be associated
with the thermodynamically compatible systems of first order
nonlinear conservation laws.



SHTC multi-phase theory - Definitions of the mixture theory

Composition characteristics

A mixture of N phases denoted by a, wherea=1,...,N.
The mass M and the volume V of an infinitesimal element read

N N
M=>"ma, V=) w, (6)
a=1 a=1

M mw-&-mz—&-
V

p=—= = Z 0a, where 0q = — (7)

The volume fraction and the mass fraction read



SHTC multi-phase theory - Definitions of the mixture theory

Composition characteristics
The mass density of the a-th phase of the partial volume v, i.e.

m mgV
pa= — =2 :&7 — 0a = Qgpq- (9)
Vq VUV Qq

The mixture entropy density n = pS is defined as

N N
Ni=Y 7Ma= Y 0aSa (10)
a=1 a=1

where s, is the specific entropy of the a-th phase.



SHTC multi-phase theory - Definitions of the mixture theory

Kinematics of mixtures

The linear momentum U = {Ug} is defined as
Ui=ui+Uy+...+Uy=01Vi+ 0oVy + ...+ onVy. (1)

The velocity V = {V,} of the mixture control volume is

U_ovitaVat...+owvn
p p

V= = V1 + CVy + ...+ CyVn- (12)

For the SHTC formulation the relative velocity w = {w, .} is needed
Wq = Vg — Vy, Wa e = Vak — Vivk, k=1,...,3. (13)

which is defined with respect to the N-th constituent that can be
chosen arbitrary.
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SHTC multi-phase theory - Formulation

Define a vector of conserved variables Q,
Q={p,U,d1,...,ON-1,01 -, ON=1, W1, .- ., Wn_1,7, .., v}, (14)
and the vector of primitive variables P
P={p,V,aq,...,an_1,C1,...,CN_1,Wq,...,Wy_1,51,...,5n}, (15)
which are related as

¢a=pag, U=pV,  0=pCa 70 = pSa (16)



SHTC multi-phase theory - Formulation

The total energy density £ of the mixture

N N
Z Z 1

(c; = Sa = <€a + 2Qa|UQ|2> 5 (17)
a=1

a=1

then can be expressed in the SHTC state variables
N

3
1
g(Q) = E :60+W(p7917"'7QN717WG"°'7WN7'I)+Z E U27 (18)
k=1

a=1

where the relative kinetic energy W is defined as

3 /N=1 2
1
Qawéyk - Z E (E QaWa,k> . (19)
k=1 a=1

The internal energies eq = 0q€q, in €9.(18)

~ R 7
a(p; 0a,Na) = Ea(pa,Sa) = &a <QGP»IG> ) (20)
®a  0Oa



SHTC multi-phase theory - Formulation

In the SHTC theory, the thermodynamic pressure of the mixture

P(Q) := p&, + Uiy, + ¢alp, + 0a€0s + Malny — €, (21)

The partial derivatives of the total mixture energy with respect to the
state vector Q are, e.g.

Z O€a 0a 5€N (P¢N — pon + QN¢N) 3 @@4_ (22)
- Opa ¢a apN ¢2 sy Q%/
1 3w ;3
Jrﬁzzgawak 7222U%?’
P~ = o= P
1
o8 _ 1. (23)

aui p



SHTC multi-phase theory - Formulation

The SHTC multi-phase system for of N phases,a=1,...,N,

oU; N 0 (UiVk + Péig, + Wg,i€w, )

N . =0, (24a)
s e (G G) o e
% N ‘W o, (240)
agﬁta N 8((9;;;/0 _0 (24d)
% N 8(82\:@ 0, (24€)
Oma  O(naVe) _ (24f)

ot 6X@ ’



SHTC multi-phase theory - Formulation

The SHTC multi-phase system for of N phases,a=1,...,N,

aU; N 0 (U/‘Vh + Poj, + Wa,igWu,k)

= - -0, (25a)
a\g?k e (wag/x,: Eoa) v (3;;[,k B a;(i,1> ~ Ay (25D)
% N ‘W o (25¢)
a(;ia 8(;5;:&) e (25d)
g V) _py (25f)

ot an



SHTC multi-phase theory - Formulation

Various dissipative processes can be considered

®, pressure relaxation
N—1

o€ Pa — Pn
a=p bE:W ®ab€ey Epa Ery PR (26)
Aq . relative velocity relaxation
o0&

= 0(Vor — Vi), (27)

N—1
1
Ao = — Z Aab,k‘c"wb,w EWb,h = ow
P oo bk

— they diminish the thermodynamic forces &;,, &u, -

— Mg serve the goal of making the system compatible with the
second law of thermodynamic.



SHTC multi-phase theory - A different form

Is it possible to write this system in a different form?

— Recall the BN-type model

O (anpn) + V - (appnun) =0,

Oi(anpntin) +V - (@n(pnUn ® Un + pnl) = piVa,
O(anpnEn) + V- (n(pnEn + Pn)un) = piu; - Vau,
Orap + U, - Va, = 0.

— A conservation equation of mass, momentum, energy and volume
fraction for each phase + inter-phase terms



SHTC multi-phase theory - A different form

The phase volume fraction equations from the eq. (25d) and (25e)

aag aag 1
V22 _ g 28
ot + Vi Xy P a (28)

The phase mass equations (25¢) can be rewritten as

004 n 9 (0aVa,r) _

ot X e (29)
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SHTC multi-phase theory - A different form

The phase momentum equations, after lengthy manipulations

()(\ b ()(IU
T oxi

(9(10,,' 0

ot T ox (30a)

(Ua:Vafe+P05h: = —Cq Z

— Cq Z 0bVb kW ki + 0aVa,kWa ki (30b)

aT,
—Ca Z Qbsb + 0aSa ax (,] (300)
N
+Ca Y 06N, — Cala, (30d)
b=1
N
+Ca Z Vb,iXb — Va,iXas (30e)
b=1

20



SHTC - Extension to elasto-plastic solids and viscous fluid

Thanks to Eulerian hyperelasticity equations of Godunov and
Romenski (GPR)

@ S.K. Godunov and E.I.LRomenski. Non stationary equations of the non
linear theory of elasticity in Euler coordinates. Journal of Applied
Mechanics and Technical Physics, 13:868-885, 1972.

I. Peshkov and E.I. Romenski. A hyperbolic model for viscous Newtonian
flows. Continuum Mechanics and Thermodynamics, 28:85-104, 2016.

An evolution equation for a matrix value field Ay, called distortion
matrix or cobasis, should be added for each phase.

— In solid mechanics is the inverse of the deformation gradient.

— In visco-plastic flows is a local field of the material element.

21



SHTC - Extension to elasto-plastic solids and viscous fluid

A, satisfies the convection-relaxation

0Aqik 0 (Aa,/‘,mvmm) 0Agik  OAgim
+ +Vam | o — —F5
ot OXp OXm OXp

> — Zgpry S0

in which the stiff strain relaxation source term Z, is

Zy = —> (det A)* A, dev (ALAG). (32)

Ta
The total energy potential £ should be augmented with &

N
;
£= (ea+e3)+ W(p, ga,wa)+5||un2. (33)

a=1

22



SHTC - Extension to elasto-plastic solids and viscous fluid

g Is assumed to be

(dev G, dev Gg)
4 ’

tr .

For this choice of elastic-shear energy potential, the elastic-shear
stress tensor reads

o€
o= _QGAT87 = —0q Cs5 (Gq dev Gy). (35)

23



Numerical Method - A simplified model

A simplified mathematical model is addressed, for N =3,a=1,2,3

00q OUg k
=11} 2 — 0
ot | ox,
OUgq 0 - day, dag
: — (Uq.iV, Padjr — i) = —Cq D a ;
ot + Xy, ( a,iVa,k + Pa0j k Ua,fe,/) — Pb O + P X
N N
—Ca Y 06V kWb ki + CaVa,kWa ki +Ca D AoL6Vb e — AaaVa,hs
b=1 b=1
0Sq 0Sa Ao _ -
— +Ve— = —C4V
3t ok, T T, oVak
dag Oag
V = (0,
ot +Vk 8Xk
9Aa,i n d(Azva) . dAaik AL\ _
ot Xy, al gxm X, a,isk>



Numerical Method - Matrix-vector notation

A compact matrix-vector notation can be defined as

8(00 + V- F(Qa) + B(Q() . TQ@ - S(Qa) (37)

with a vector of conserved Q, and primitive V, variables for each
phase

Q= (Qa, Ua;sa;aa»Aa)a Vo = (PG,VG; PaaaaaAa)T, (38)
which are related by operators
Qa(X,y) = C[Va(x, V)], and Va(X,¥) = P[Qa(X, y)]- (39)

The quasi-linear form

1
OVg+CVV, = S(Va), with C = 9Qq (6F(Qa)

8Qa
o (K2 1) ).(40>

Vg



Numerical Method - Approach

An operator splitting approach is employed.

— first the homogeneous part of the system is solved

&Q+V-FQ)+BQ)-va=0, -  Qf (41)

— then the Cauchy problem for the ODEs system

M_s@)+s@)  a)=a” - @ (@)
0 0
+Ca Zrt\)’=1 )‘bgbvb,fe - )\aQaVa,k 0
SV(QG) = 0 ) Ss(Qa) =10/{, (43)
2CaV 0
0 Z



Numerical Method - Discretization of the homogenous part

A path-conservative MUSCL-Hancock method

At
Q) =qf; - ( Fior/2) = Foay + Diayz + Difvz,f) +

At

" Ay ( FR2va/2 = Fiaja + Dijaaj2 + D/}H/Z) + .
4ty

| At

+ 5 B {V,‘J (t ”*W/z,x,ﬂ,yj)} AVi+

At

+ a8 [v,{, (t ”+1/2,x[,y,)] AV,

Fluxes and non-conservative products are evaluated in the primitive
space of the variable.

27



Numerical Method - Discretization of the homogenous part

The conservative numerical flux FRs

P12, Vi) = 3 (F(v0) + Fa(vi) ) — 557 (€lve] — €lwi]),

(45)
1 1
P22V, Vi) = 5 (Fa(vi) + Fa(vi) ) = 557 (Clvel — C[wal)
The path integrals Diyq/2; and D; 11
]
D\u(VL,VR) = 1/ B [\U(VL,VR,S)] . ﬁaids (46)
2 Jo 0s

in which the segment path W(v;,Vg,S) = v, + S(Vg — V|)

28



Numerical Method - Discretization of the homogenous part

The cell-local space-time predictor in the primitive space variable

AV, AV,
(XV7) Vij+ X =Xij)—— + (V= Vi) y+(t_tn)at i (47)

AX
— AV, by means of Generalised minmod slope limiter
— AV; positivity preserving limiting

— 0:V;; approximated with finite difference from (40)
+ source contribution

29



Numerical Method - Discretization of the source contribution

Source related to the velocity relaxation process

% =s(v), V() =PE@=V" - v (48)
0
b1 AbCoVb g — AaVak
with Su(Vo) = 0 : (49)
%Cavé,k
0

— for each direction, an independent system for V3 = (v 1,Vv2.1,V31)"
— Backward Euler dicretization

VR =V S AL MUY o U = (- At M) VD (50)

—s for entropy analytical solution S,(V/*", 1)

30



Numerical Method - Discretization of the source contribution

Source related to the distortion matrix
-3

= (det Ay)*® AqdevGq, (51)
a

8iAg + V(A - Va) + (VAq — VAL) - Vg

— highly non-linear, stiff, wide range of time scales,

— in multi-phase context 74(aqg) = &ae) Tg_g(""),

— an robust method to solve the strain relaxation source [1]

@ S. Chiocchetti, M. Dumbser. An exactly curl-free staggered semi-implicit
finite volume scheme for a first order hyperbolic model of viscous
two-phase flows with surface tension. Journal of Scientific Computing,
94:24,2023.
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Numerical Method - Discretization of the source contribution

Source related to the distortion matrix

The problem is simplified by polar decomposition, recalling that the
metric tensor Gq = AlA,,

As =R, GY? with G2 =E,GY*E;' = Ry=A.G, "%, (52)
— rotational component are invariant under strain relaxation
— thus the following nonlinear ODE system is solved

(1) _
dtha = %020 0 (et Go)*/® Gy dev G, (53)
a

32



Numerical experiments - Lid driven cavity

Current time = 0.000000

04 03 02 01 0 01 02 03 04 05 04 03 02 01 0 01 02 03 04 05

1 ?
o u-Ghiaetal i
o v-Ghaetal K
¥~ Numerica soluton
— — u- Numerical solution P

u(y), vix)

Figure 1: Rotations (Left), comparison velocity components in x and
y-direction (Right)
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Numerical experiments - Berilum bending plate

This problem simulates the elastic (reversible) vibrations of a
beryllium bar after an initial velocity impulse

mmmmmmmmmmmmm

Current time = 0.000000 00|\

Figure 2: Volume fractions (Left), comparison velocity component in
y-direction (Right)
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Numerical experiments - Three phases 2D Riemann problem

This problem tests the ability of a model to propagate shock waves
into different phases.

Current time = 0.000000 Current time = 0.000000

Figure 3: Volume fractions (Left), densities (Right)



Numerical experiments - Three phases 2D Riemann problem

Current time = 0.000000 Current time = 0.000000

Figure 4: Volume fractions (Left), rotations (Right)



Numerical experiments - A complex configuration

Current time = 0.000000 Current time = 0.000000

01 02 03 04 05 06 07 08 09

Figure 5: Volume fractions (Left), stress (Right)

37



Research directions

Some future research directions are:

- development of a Hyperbolic Thermodynamically Compatible
(HTC) numerical scheme for the SHTC multiphase model,
considering more than two phases;

- extension of the multi-phase SHTC model to include
phenomena such as phase change and surface tension;

- development of a structure-preserving numerical scheme to
account for different involution constraints present in SHTC
systems;



	anm7: 
	7.10: 
	7.9: 
	7.8: 
	7.7: 
	7.6: 
	7.5: 
	7.4: 
	7.3: 
	7.2: 
	7.1: 
	7.0: 
	anm6: 
	6.10: 
	6.9: 
	6.8: 
	6.7: 
	6.6: 
	6.5: 
	6.4: 
	6.3: 
	6.2: 
	6.1: 
	6.0: 
	anm5: 
	5.5: 
	5.4: 
	5.3: 
	5.2: 
	5.1: 
	5.0: 
	anm4: 
	4.5: 
	4.4: 
	4.3: 
	4.2: 
	4.1: 
	4.0: 
	anm3: 
	3.5: 
	3.4: 
	3.3: 
	3.2: 
	3.1: 
	3.0: 
	anm2: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	anm1: 
	1.54: 
	1.53: 
	1.52: 
	1.51: 
	1.50: 
	1.49: 
	1.48: 
	1.47: 
	1.46: 
	1.45: 
	1.44: 
	1.43: 
	1.42: 
	1.41: 
	1.40: 
	1.39: 
	1.38: 
	1.37: 
	1.36: 
	1.35: 
	1.34: 
	1.33: 
	1.32: 
	1.31: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


